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ABSTRACT
Transformer-based model has gained great success in the multi-
media sequential recommendation task due to its strong ability
to handle sequential data. However, existing Transformer-based
models regard the items in the sequential data as a user-specific
fully-connected graph (local graph) and only explicitly consider the
temporal information in the local graph to capture the users’ inten-
tions, ignoring the fact that the user-item bipartite graph (global
graph) may carry important relation patterns to the sequential
items. Additionally, it is still unclear whether (and how) the infor-
mation hidden in the global graphs can help the Transformer-based
models better understand the users’ sequential behavior according
to the current literature. To investigate this important problem,
we propose to utilize the global graph information to help the
Transformer-based sequential recommendation, where the infor-
mation from different modalities, i.e., user-item interactions in the
global graph and the temporal patterns in the historical sequences,
are taken into account jointly. In concrete, we propose two Global-
Local (GL) GraphFormer models for utilizing both the global graph
and local temporal information. One GL-GraphFormer is able to
gift the Transformer-based model with both first- and second-order
graph information through two specifically designed encodings.
The other GL-GraphFormer transfers higher-order graph infor-
mation into the local Transformer with pretrained Graph Neural
Networks (GNNs). Extensive experiments on several real-world
datasets demonstrate that i) our proposed GL-GraphFormers can
bring substantial improvement over baseline methods, and ii) the
benefits of different orders of global graph information vary with
the dataset sparsity.
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1 INTRODUCTION
With the rapid growth of modern web services and mobile devices,
the increasing number of available sequential user behaviors are
playing an important role in improving accuracy of multimedia
recommendation. The sequential behaviors of a user is driven by
their personal evolving intentions in the course of time. A deep
understanding of user sequential historical behaviors can help to
discover user intentions, thus resulting in more accurate person-
alized sequential recommendation, which aims at leveraging the
sequences of behaviors to recommend the next item that the target
user may be interested in. Inspired by the power of the Trans-
former [24] in handling temporal information in sequential data,
recent works [1, 11, 16, 21] utilize the Transformer-based model for
sequential recommendation and have achieved impressive success.

The Transformer-based models for sequential recommendation
generally regard the historical user behaviors as a user-specific
fully-connected graph (local graph), and simply append temporal
encoding to the node features to capture user intentions. However,
different from traditional sequential data, the items within the
historical user behaviors tend to form more complex relations with
each other since there exists a global user-item bipartite graph that
connects the items through users to other items. For example, if
more users simultaneously interact with both item A and item B,
then item A and item B should have a closer relationship with
each other. Also, if item A is consumed by many users, then its
popularity in the global graph may have an impact on its role
in the user-specific local sequential fully-connected graph. These
intuitive observations indicate that the information from the global
graph will influence both the nodes and edges in the local graph.
However, existing literature ignores the connection between global
and local information, which is important in understanding the
user’s intentions.

In this paper, we propose to utilize the global graph information
to help the Transformer-based sequential recommendation. Our
target is to explicitly incorporate the global graph information into
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the Transformer, and it is necessary to investigate the following
problems:

• What kind of global graph information can help the local
Transformer better understand the sequential behavior?

• What is the most appropriate strategy to combine the global
graph information with the local sequential temporal in-
formation so that the sequential recommendation can be
improved?

To address the two problems, we propose two Global-Local Graph-
former (GL-GraphFormer) models based on the basic Transformer
structure, so that our proposed strategies can fit other models based
on the Transformer structure. Specifically, one GL-GraphFormer
is designed to utilize the first-order and second-order information
of the global graph, i.e., the item popularity and the number of
common users consuming a pair of items. We respectively encode
the first-order and second-order information to the node and edge
features in the local fully-connected graph of the Transformer,
expecting this kind of information can help the model to more accu-
rately capture the user intentions. Inspired by the power of Graph
Neural Network (GNN) in recommendation [2, 6, 22, 27, 28] for cap-
turing higher-order graph information, the other GL-GraphFormer
utilizes the GNN to pretrain on the global graph and then transfer
the higher-order knowledge to the local graph. We conduct experi-
ments on several real-world datasets and the results show that i)
the proposed two GL-Graphformer models can bring significant
benefits to the sequential recommendation and ii) datasets with
different sparsity may benefit from different orders of global graph
information. We summarize our contributions as follows,

• We propose to investigate the problem of utilizing the global
graph information to help the Transformer-based sequential
recommendation, which may potentially serve as a novel
and promising research trend.

• We present two Global-Local GraphFormer models that com-
bine different orders of global graph information to the
local temporal Transformer, which has the advantageous
ability of generalization and can be applied to many other
Transformer-based sequential recommender systems.

• Experiments on several real-world datasets demonstrate that
global graph information employed by our model can signifi-
cantly improve the sequential recommendation, and datasets
with different sparsity benefit from different orders of global
graph information.

2 RELATEDWORK
General Recommendation. Recommender systems aim to predict
to what extent the user will like an item. Early recommender sys-
tems generally employ the collaborative filtering [3, 9, 13, 19, 20],
based on the matrix factorization idea to learn the latent represen-
tation for users and items. With the development of deep learning,
more and more deep models are used for recommendation and
have gained great success. Multi-Layer-Perceptron(MLP) has been
used to capture the non-linear relationships between user and item
embeddings [7]. Auto-encoder based methods show robustness to
behavior noise [14]. Due to the graph nature of user-item relation,
recent efforts [2, 6, 22, 27] design different kinds of Graph Neural
Networks(GNN) for collaborative filtering. The GNN based models

take the advantage of message passing to obtain high-order con-
nectivity from the user-item interaction and show strong ability in
improving the recommendation accuracy. However, these works
neglect the sequential nature of the user’s behavior, which may
limit them for more personalized recommendation.

Sequential Recommendation.With consideration to the se-
quential characteristics of user’s behavior, another line of recom-
mendation, sequential recommendation, has gained increasing at-
tention in the community. The sequential recommender aims to
predict the user’s preference towards an item based on the user’s
personalized historical behavior. Early sequential recommenders
utilize the first or second-order Markov chains [23, 25] to model
the users’ sequential behavior. Inspired by the expressive power
of sequential deep models, later works [8, 10, 30] have achieved
further improvement by utilizing the recurrent neural networks
and the more recent Transformer-based models [1, 11, 16, 21]. The
Transformer-based models generally regard the items in the sequen-
tial historical behavior as a fully connected graph with temporal
encoding for nodes, and then utilize the self-attentive mechanism to
extract user intentions from the graph. However, this kind of graph
construction method neglects the complex relationships among the
historical items in the global user-item bipartite graph, which has
shown effectiveness in general collaborative filtering. Although
some other works [15, 29, 31] provide other ways to construct the
graph for the sequential historical items, like utilizing additional se-
quences [26]. However, there are still rare works exploring whether
the bipartite global graph which shows strong ability in the gen-
eral recommendation can help the Transformer-based sequential
recommendation.

Long in history, the global graph information has been utilized
for general recommendation through graph representation learning
models such as GNNs. The novel idea of marrying global graph
information with local fully-connected graphformer, as well as
experimental discoveries on the benefits brought by different orders
of graph information in this work, can be regarded as a pivot to
bridge the traditional graph-based general recommendation with
the sequential recommendation.

3 METHOD
In this section, we present the two Global-Local GraphFormer. The
overall framework of the two GL-GraphFormer in fig. 1. We will
first introduce the preliminaries and how Transformer is generally
used for extracting the user’s intention in sequential recommen-
dation in section 3.1. Then, in section 3.2 and section 3.3, we re-
spectively give the detailed description for how we design the two
GL-GraphFormer. Finally, in section 3.4 we describe how we train
our GL-GraphFormer.

3.1 Preliminaries
Assuming that there are totally𝑀 users and 𝑁 items, constituting
the user set𝑈 and the item set 𝐼 . Then the users and the items will
form a bipartite graph 𝐺 = {𝑉 , 𝐸}, which we call the global graph.
The nodes in𝑉 contain all the users and items, i.e.,𝑉 = {𝑈 , 𝐼 }, |𝑉 | =
𝑀 +𝑁 , and there exist an edge in 𝐸 if a user has interaction with an
item. Note that the edges will only exist between the user node and
the item node, there is no edge between two users or between two
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Figure 1: The overall framework of the GL graph-former for sequential recommendation. We explore two ways to combine the
global graph information to the Transformer-based encoder. One is to add the first and second-order encoding to the item and
relation embedding. The other is to utilize GNN to capture higher-order item interaction and initialize the item embeddings
with the pretrained embeddings in GNN.

items. In the general recommendation utilizing GNN, we usually
split the edges in 𝐸 into the training, validation and testing dataset.
The task is to utilize the edges in the training dataset to conduct
the message passing so that the model can predict the edges in the
validation and test dataset.

In the sequential recommendation scenario, we focus on the user-
centric data, the user’s sequential historical behavior. For each user
𝑢 ∈ 𝑈 , we have their historical behavior, x𝑢 = {𝑥𝑢1 , 𝑥

𝑢
2 , · · · , 𝑥

𝑢
𝑇
}. x𝑢

contains T items user 𝑢 recently interacted with in chronological
order, and each 𝑥𝑢

𝑖
∈ 𝐼 . The task for the sequential recommendation

is to predict the next item that the user 𝑢 will most likely inter-
act with. Next, we describe how the general Transformer-based
sequential recommender extract the users’ future intention.

We first map each item 𝑥𝑢
𝑖
in the historical sequence to their em-

bedding and obtain the embedding sequence,m𝑢 = [𝑚𝑢
1 ,𝑚

𝑢
2 , · · · ,𝑚

𝑢
𝑇
],

m𝑢 ∈ 𝑅𝑇×𝑑 , where 𝑑 is the dimension of the item embedding.
Then to capture the temporal relations of each item, each item is
equipped with its time position embedding, and then we obtain the
time-aware item embedding 𝑧𝑢

𝑖
as follows,

𝑧𝑢𝑖 = 𝑓 (𝑚𝑢
𝑖 , 𝑝𝑖 ), 𝑖 = 1, 2, · · · ,𝑇 (1)

where 𝑝𝑖 is the embedding for position 𝑖 , 𝑓 () is a function that is
used to fuse the item embedding and the position embedding. The
widely adopted 𝑓 could be adding the two embedding(assuming the
two embedding have the same dimension) or concatenating them
followed by a linear layer, etc. For simplicity, we adopt the addition
operation for 𝑓 () in our experiment and assume the dimension of
𝑧𝑢
𝑖
is 𝑑 . The Transformer encoder takes the time-aware historical

embedding sequence z𝑢 = [𝑧𝑢1 , 𝑧
𝑢
2 , · · · , 𝑧

𝑢
𝑇
] as input and will output

the representation for the user’s future intention. The Transformer-
based model can be stacked with many Transformer encoder blocks.
The input for each Transformer encoder block is a sequence of
embedding with the same size 𝑇 × 𝑑 . Denoting the input for the
𝑙𝑡ℎ block as ℎ𝑙−1 ∈ 𝑅𝑇×𝑑 , we describe the flows in one block of the

Transformer encoder. Each Transformer encoder block is mainly
composed of the multi-head attention layer and the feed-forward
layer. The multi-head attention layer is conducted as follows,

𝐾𝑗 = ℎ
𝑙−1𝑊𝑘 𝑗 , 𝑄 𝑗 = ℎ

𝑙−1𝑊𝑞𝑗 , 𝑉𝑗 = ℎ
𝑙−1𝑊𝑣 𝑗 , (2)

𝐴 𝑗 =
𝑄 𝑗𝐾𝑗 ′√︁
𝑑𝑘

, 𝐴𝑡𝑡𝑛(ℎ𝑙−1) 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴 𝑗 )𝑉𝑗 , 𝑗 = 1, · · · ,𝑚, (3)

where𝑊𝑘 𝑗 ,𝑊𝑞𝑗 ,𝑊𝑣 𝑗 ∈ 𝑅𝑑×𝑑𝑘 , 𝑑 = 𝑑𝑘 ×𝑚, and𝑚 is the number
of the head. In Eq.(2), each item embedding in ℎ𝑙−1 will obtain its
key 𝐾𝑗 , query 𝑄 𝑗 and value 𝑉𝑗 under the 𝑗𝑡ℎ head. Then in Eq.(3),
𝐴 𝑗 ∈ 𝑅𝑇×𝑇 gives the relation matrix of the items under the 𝑗𝑡ℎ

head, and 𝐴𝑡𝑡𝑛(ℎ𝑙−1) 𝑗 ∈ 𝑅𝑇×𝑑 gives the user’s intention at each
time stamp under the 𝑗𝑡ℎ head. Finally, we concatenate the output
of all the heads and obtain 𝐴𝑡𝑡𝑛(ℎ𝑙−1) = [𝐴𝑡𝑡𝑛(ℎ𝑙−1) 𝑗 ]𝑚𝑗=1, and
𝐴𝑡𝑡𝑛(ℎ𝑙−1) ∈ 𝑅𝑇×𝑑 . To accelerate convergence, the LayerNormal-
ization(LN) is usually conducted before the multi-head attention
and the skip connection is adopted. We obtain the hidden state ℎ𝑙1
after the multi-head attention as follows,

ℎ𝑙1 = ℎ
𝑙−1 +𝐴𝑡𝑡𝑛(𝐿𝑁 (ℎ𝑙−1)) (4)

After the multi-head attention, a Multi-Layer-Perceptron(MLP) is
used to model the non-linear combination for different intentions.
Similar to the multi-head attention, the LayerNormalization and the
skip connection is adopted, we obtain the output of one Transformer
encoder block as follows,

ℎ𝑙 = ℎ𝑙1 +𝑀𝐿𝑃 (𝐿𝑁 (ℎ𝑙1)) (5)

ℎ0 is usually initialized with the historical embedding sequence
z𝑢 . The Transformer-encoder block can be stacked multiple times,
it depends on how many orders of relations we want to capture
among the items. Assuming that we stack the Transformer-encoder
block for total M times and we will obtain the final ℎ𝑀 ∈ 𝑅𝑇×𝑑 ,
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which contains the intentions of user 𝑢. Usually, the intention of
user 𝑢 with the previous 𝑇 historical behavior is obtained from
the pooling result of ℎ𝑀 . Different pooling methods are adopted to
extract the user intention from ℎ𝑀 in previous works. SASrec [11]
adopt the last pooling, i.e., regarding the ℎ𝑀

𝑇
, the last embedding in

the embedding sequence ℎ𝑀 , as the user’s future intention, while
CDR [1] adopt the average of 𝑇 embeddings in ℎ𝑀 as the user’s
future intention.

𝑖𝑛𝑡𝑒𝑛𝑡𝑢𝑇 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(ℎ𝑀 ) (6)

Next, we describe the two proposed GL-GraphFormer that com-
bines the global graph information with the temporal sequential
recommendation.

3.2 GL-GraphFormerI: First and Second-order
Information Encoding

We focus on better modeling the relations among the items in the
sequence of the user’s historical behavior. For each item in the
global graph G, its information of the graph can be obtained from
its neighbors or high-order neighbors. In this part, we only consider
the first-order information and the second-order information, and
propose two kinds of encoding for the Transformer-based model.

3.2.1 Item popularity encoding. The first-order neighbors of an
item are the users who have interactionwith this item. If many users
have interaction with one item, this item may play a different role
in the historical behavior. This observation fits a common concept
in recommendation, item popularity. Users’ purchase behavior is
not only determined by their preferences but also affected by the
popularity of the items. People always give priority to more popular
items, but this kind of popular item may hardly reflect each user’s
personalized interest. Explicitly incorporating the item popularity
information can make the Transformer better capture the general
interests of all users and the personalized interest for each user.

To this end, we define item popularity as the degree of an item in
the global user-item bipartite graph G, i.e., the number of the first-
order neighbors of an item. We develop item popularity encoding
according to the degree of the item, and add it to the time-aware
item embedding as follows,

𝑧𝑢𝑖 =𝑚𝑢
𝑖 + 𝑝𝑖 , ℎ0𝑖 = 𝑛𝑑𝑒𝑔 (𝑥𝑢

𝑖
) + 𝑧𝑢𝑖 , (7)

where ℎ0 is the input for the first Transformer block and ℎ0
𝑖
is

the 𝑖𝑡ℎ embedding in ℎ0, 𝑚𝑢
𝑖
is the embedding of 𝑥𝑢

𝑖
, 𝑛 ∈ 𝑅𝑑 is

learnable embedding vectors specified by the degree 𝑑𝑒𝑔(𝑥𝑢
𝑖
), and

𝑝𝑖 is the position embedding. By using item popularity encoding,
the GL-GraphFormer can utilize the first-order information in the
global graph and capture the item importance in the attention layer.

3.2.2 Common user encoding. The second-order neighbors of an
item in the global bipartite graph G are the items who have com-
mon users with this item. The relations between two items can be
bridged by the user who has interacted with both of them. If more
users interact with both item 𝑖1 and item 𝑖2, item 𝑖1 and item 𝑖2
should have a closer relationship with each other. However, such
information is not available in the sequential Transformer recom-
mender. We propose to explicitly encode this information into the
local Transformer. Specifically, we use the common user encoding

to solve this problem. For item 𝑥𝑢𝑎 and item 𝑥𝑢
𝑏
in the historical

sequence x𝑢 , we denote the number of users that bought them
simultaneously as 𝑠 (𝑎, 𝑏) and 𝑎, 𝑏 ∈ {1, 2, · · · ,𝑇 }. This second-order
information describes the number of common users between two
items, so it is a natural practice to encode this information to the
relation matrix 𝐴 𝑗 in Eq.(3).

𝐴 𝑗,𝑎𝑏 =
𝑄 𝑗,𝑎 · 𝐾 ′

𝑗,𝑏√︁
𝑑𝑘

+ 𝑐𝑠 (𝑎,𝑏) , 𝑗 = 1, 2, · · · ,𝑚, (8)

𝐴𝑡𝑡𝑛(ℎ𝑙−1) 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴 𝑗 )𝑉𝑗 , 𝑗 = 1, 2, · · · ,𝑚, (9)

where 𝐴 𝑗,𝑎𝑏 is the (a, b)-element of the relation matrix as shown
in Eq.(3). 𝑐𝑠 (𝑎,𝑏) is a learnable scalar indexed by 𝑠 (𝑎,𝑏 ) , and shared
across all layers. The kind of encoding will be added for all the𝑚
attention heads.

By introducing common user encoding, we inject the second-
order global graph information into the local Transformer explicitly,
expecting the GL Transformer can pay more attention to the items
that have more common users.

In sum, the item popularity encoding focuses on the first-order
information of each item and the common user encoding focuses on
the second-order information. Regarding the items in the historical
sequence in the Transformer encoder as a fully-connected graph,
the item popularity encoding focuses on the node features and the
common user encoding focus on the edge features. Replacing the ℎ0

𝑖
in section 3.1 with Eq.(7) and replacing Eq.(3) with Eq.(8)(9) gives
the complete GL-GraphFormerI.

3.3 GL-GraphFormerII: High-order Information
through Graph Pretraining

In section 3.2, we introduce two kinds of encoding methods that
combine the first- and second-order global graph information into
the local Transformer. In this section, we explore whether higher-
order global graph information can bring further benefits.

However, higher-order information of the global graph becomes
less intuitive than the first- and second-order information, and it is
hard to come up with a natural encoding method like section 3.2.
To tackle this problem, inspired by the power of Graph Neural
Networks(GNN) in capturing the high-order interactions among
nodes, we utilize a pretrained GNN on the global graph to gift
the item embeddings with higher-order knowledge. For simplicity,
we adopt the efficient and effective LightGCN [6] structure for
collaborative filtering as the pretrained knowledge extractor. Next,
we describe the details of the adopted GNN and how we utilize it
to extract the higher-order knowledge.

3.3.1 Message Passing. The parameters for LightGCN are only the
embeddings for the users and items, and it only relies on the linear
message passing to obtain the higher-order interaction between
different nodes. Recall that the bipartite graph𝐺 = {𝑉 , 𝐸}, where
the nodes 𝑉 contain the user set𝑈 and the item set 𝐼 . For user 𝑢 in
𝑈 and item 𝑖 in 𝐼 , their embeddings are respectively e0𝑢 and e0

𝑖
with

dimension 𝑑 . Then, in the 𝑘𝑡ℎ layer of the LightGCN, the model
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will conduct linear message passing as follows,

e𝑘𝑢 =
∑︁
𝑖∈𝑁𝑢

1√︁
𝑑𝑒𝑔(𝑢)

√︁
𝑑𝑒𝑔(𝑖)

e𝑘−1𝑖 , (10)

e𝑘𝑖 =
∑︁
𝑢∈𝑁𝑖

1√︁
𝑑𝑒𝑔(𝑖)

√︁
𝑑𝑒𝑔(𝑢)

e𝑘−1𝑢 ,

where 𝑁𝑢 and 𝑁𝑖 means the neighbors of user 𝑢 and item 𝑖 in G,
and 𝑑𝑒𝑔() is the same as our previous notation for the degree of
one node. In each layer of the LightGCN, the embedding of each
user will be updated by the linear combination of its neighbor item
embeddings, and symmetric for the embedding of each item. The
degree of the items and users are used for normalization to avoid
the embedding scale explosion.

3.3.2 Model Pretraining. The embeddings of each layer are av-
eraged to make the final embedding contain different orders of
information. The final embedding for user 𝑢 and item 𝑖 is obtained
as follows,

e𝑢 =

𝐿∑︁
𝑘=0

1
𝐿 + 1

e𝑘𝑢 , e𝑖 =
𝐿∑︁

𝑘=0

1
𝐿 + 1

e𝑖𝑢 . (11)

Thenwhether user𝑢 will interact with item in the global graph G 𝑖 is
calculated with the inner product: 𝑦𝑢𝑖 = e

′
𝑢e𝑖 . Then the pretraining

of the LightGCN parameters will be conducted by optimizing the
following Bayesian Personalized Ranking(BPR) loss [19].

𝐿𝐵𝑃𝑅 = −
∑︁
𝑢∈𝑈

∑︁
𝑖∈𝑁𝑢

∑︁
𝑗∉𝑁𝑢

𝑙𝑛(𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) + 𝜆 | |𝑤 | |2, (12)

where 𝜆 is the coefficient for the L2 regularizer. After training on
the graph of the training dataset, we can obtain the embedding for
each item. Replacing the𝑚𝑢

𝑖
with the pretrained item embedding

gives the GL-GraphFormerII. In our experiments, we utilize the pre-
trained e𝑖0 for item 𝑖 in the historical sequence, where e𝑖0 implicitly
contains the higher-information through the back-propogation pro-
cess. Also, we provide the results utilizing the pooling embedding
e𝑖 in section 4.

3.4 GL-GraphFormer Training
In this section, we describe how we train the GL-GraphFormer
for sequential recommendation. With the GL-GraphFormer, we
can obtain the intention for user 𝑢 from their historical sequence
x𝑢 = {𝑥𝑢1 , 𝑥

𝑢
2 , · · · , 𝑥

𝑢
𝑇
} using Eq.(6). Based on 𝑖𝑛𝑡𝑒𝑛𝑡𝑢

𝑇
, we predict the

user’s preference towards an item 𝑖 , 𝑟𝑇
𝑢,𝑖

, with their inner product,

𝑟𝑇𝑢,𝑖 =< 𝑖𝑛𝑡𝑒𝑛𝑡
𝑢
𝑇 , 𝑒𝑖 >, (13)

where 𝑒𝑖 is the embedding for item 𝑖 . We adopt the same prediction
loss as [11] as follows,

𝐿𝑢𝑖,𝑇 = 𝑙𝑜𝑔(𝜎 (𝑟𝑇𝑢,𝑖 )) |𝑖=𝑡𝑎𝑟𝑔𝑒𝑡𝑇 + 𝑙𝑜𝑔(1 − 𝜎 (𝑟𝑇𝑢,𝑗 )) | 𝑗≠𝑡𝑎𝑟𝑔𝑒𝑡𝑇 , (14)

where 𝑡𝑎𝑟𝑔𝑒𝑡𝑇 is the ground truth item andwe follow [11] to sample
one negative item 𝑗 for each time step for user 𝑢.

4 EXPERIMENTS
In this section, we present the experimental setup and results.

Datasets.We conduct experiments on 5 recommendation datasets.
Two of them are from Amazon [5], named Amazon-Beauty and

Amazon-Games. Two of them are from MovieLens [4], named
MovieLens-1M and MovieLens-10M. Another one is the Steam [17].
These datasets have different scales and sparsity. The statistics of the
datasets are shown in table 1. We split the datasets as the previous
works [11, 16, 21], i.e., using the last item of each user’s sequence
for test and the last but one for validation, and the remaining data
are used for training.

Table 1: Dataset statistics

Beauty Games Movie-1M Movie-10M Steam
#users 52,024 31,013 6,040 71567 334,730
#items 57,289 23,715 3,416 10677 13,047
avg.seq 7.6 9.3 163.5 139.7 11.0

Implementation Details.We implement our model based on
the basic Transformer structure, the same as SASRec [11], the ear-
liest work utilizing Transformer for sequential recommendation.
Many later works [1, 16, 21] add more structures based on SASRec,
thus the improvement on the basic model will be more meaningful.
The layer for the Transformer block is 2 and the hidden dimen-
sion d is searched from{10,20,30,40,50} using the basic Transformer
model(SASRec). The optimizer is Adam [12] with learning rate 1e-3.
The batch size is 128 and the dropout rate for the MovieLens is
0.5 and 0.2 for other datasets. The pretrained LightGCN model is a
3-layer model recommended by the original paper and optimized
with BPRLoss. The optimizer is Adam with learning rate 1e-3. The
batch size is 2048, and the model is trained for 400 epochs. Addi-
tionally, when utilizing the pretrained embedding to initialize the
historical sequence item embedding, we scale each embedding by
dividing a scale factor 5.0. This operation is because the pretrained
embedding from LightGCN has a large scale and directly using
them for initialization causes hard convergence.

Recommendation Performance.We evaluate the models in
terms of Recall@10 and normalized discounted cumulative gain
(NDCG@10), which are two widely adopted metrics in recommen-
dation. Higher value in both metrics indicates better performance.
Different from SASRec, we do not calculate these metrics with the
sampled negative items, we calculate the metrics with all the items,
which is more accurate as indicated in previous work [18].

The experimental results are shown in table 2. We report the per-
formance of the basic Transformer-based sequential recommender,
SASRec, and LightGCN, the model we utilize for pretraining. The
GL-GFormerI and GL-GFormerII indicates the two Global-Local
GraphFormer in section 3.2 and section 3.3. Except for these mod-
els, we also explore the variants with different combinations of the
proposed first-, second- and higher-order information .

From the results in table 2, we can see that the sequential recom-
mender generally performs better than the collaborative filtering
model in sequential recommendation (except on the Beauty dataset).
More importantly, we obtain the following observations:
• Incorporating the global graph information into the local
Transformer can bring benefits. Comparing the SASRec base-
line model with two kinds of GL-GraphFormer, we can see that
on the Amazon-Beauty, Amazon-Games, and Steam dataset, GL-
GFormerII achieves significant improvement than SASRec. On
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Table 2: Model performance. The variants of the GL graph-former as denoted as follows: Base means the original Trans-
former(SASRec) for sequential recommendation. 1 means adding the first-order global graph information (popularity encod-
ing), 2 means adding the second-order common user encoding, and P means using the pretrained embedding from LightGCN.
Pretraining of LightGCN on the MovieLens-10M has high computational cost because of the huge number of interactions, and
we report it as out of time(OOT).

Dataset
Model Amazon-Beauty Amazon-Games MovieLens-1M MovieLens-10M Steam

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10
SASRec 0.0138 0.0072 0.0605 0.0295 0.2450 0.1304 0.1256 0.0621 0.1140 0.0606

LightGCN 0.0253 0.0122 0.0532 0.0264 0.0819 0.0408 OOT OOT 0.0673 0.0351
GL-GFormerI 0.0150 0.0074 0.0584 0.0298 0.2551 0.1382 0.1269 0.0628 0.1147 0.0652
GL-GFormerII 0.0294 0.0152 0.0755 0.0390 0.2440 0.1303 OOT OOT 0.1268 0.0718

Base+1 0.0125 0.0066 0.0650 0.0334 0.2505 0.1361 0.1229 0.0608 0.1165 0.0644
Base+2 0.0125 0.0055 0.0615 0.0291 0.2608 0.1416 0.1298 0.0634 0.1251 0.0711

Base+1+P 0.0288 0.0148 0.0771 0.0382 0.2531 0.1336 OOT OOT 0.1214 0.0677
Base+2+P 0.0320 0.0168 0.0795 0.0400 0.2550 0.1358 OOT OOT 0.1283 0.0722

Base+1+2+P 0.0242 0.0119 0.0737 0.0369 0.2570 0.1358 OOT OOT 0.1180 0.0660

the two MovieLens dataset, the GL-GFormerI brings substantial
recommendation accuracy improvement.

• The benefits of the global graph information to the Trans-
former are highly related to the dataset sparsity. We can
see that GL-GFormerI shows better performance on the dense
MovieLens-1M and MovieLens-10M dataset, while GL-GFormerII
performs better on the more sparse dataset Amazon-Beauty,
Amazon-Games and Steam. More specifically, with the results
of the variants "Base+X"(X=1,2,1+P, etc.), we can see that the
first-order encoding (item popularity encoding) does not play a
significant role under different datasets. The second-order encod-
ing brings the best performance on the MovieLens dataset, and
the combination of the second-order encoding and pretraining
gives the best performance on the sparse dataset. These phe-
nomenons indicate that more sparse dataset needs higher-order
global graph information. It is not hard to understand this ob-
servation. When the dataset becomes sparse, the common items
between two users will become fewer, more valuable relations
between items will come from higher-order information.

Effects of Different Initialization. In our previous experi-
ments for GL-GraphFormerII, we utilize the 0𝑡ℎ layer of embedding
from LightGCN because the backpropogation process will make
the item embedding in the 0𝑡ℎ layer aware of their higher-order
neighbors. We also provide the results of utilizing the average pool-
ing embedding of different LightGCN layers as initialization. The
results are shown in table 3, and we observe that utilizing pool-
ing embedding shows comparative performance on the Beauty
and Steam dataset, but achieves clear improvement on the Games
dataset because the average pooling explicitly contains different
order of graph information.

Visualization. We provide a Top1 recommendation example of
a one-layer GL-GraphFormer and the original one-layer SASRec.
The ground truth is within the Top10 of GL-GFormer while but
beyond the Top10 of SASRec recommendation. The SASRec baseline
wrongly focuses on the shampoo and gives the wrong matching,
indicating the attention mechanism and the learned embedding for
the items in the SASRec are not so good. In contrast, our method

Table 3: Performance@10 of different pretrain initialization

Dataset
Initialization Beauty Games Steam

Recall NDCG Recall NDCG Recall NDCG
0𝑡ℎ layer 0.0294 0.0152 0.0755 0.0390 0.1268 0.0718
pooling 0.0303 0.0153 0.0830 0.0435 0.1259 0.0722

Lip Shampoo Foundation Facial Cleanser

Cosmetic Brush

Lip Shampoo Foundation Facial Cleanser

Hydrating Lotion

Moisturizing  

Cream

Ground truth

SASRec

GL-GraphFromer

Historical
sequence

Historical
sequence

Future intention

Future intention

Figure 2: Attention in GL-GraphFormer and SASRec

gives more reasonable attention about facial cosmetics and predicts
the right moisturizing intention of the user.

5 CONCLUSION
In this paper, we present a novel and promising perspective, uti-
lizing the bipartite user-item global graph information to enhance
the Transformer-based sequential recommendation. We offer two
Global-Local GraphFormers, effectively improving the performance
of Transformer model for sequential recommendation. This work
also discovers that more sparse datasets benefit from higher-order
global graph information. Further investigations including explor-
ing more ways of utilizing the global graph information for sequen-
tial recommendation and designing more advanced models based
on the GL-GraphFormer will be a promising future direction.
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